FDTD Seismic Simulation of a Moving Tracked Vehicle

Stephen A. Ketcham, Mark L. Moran, Jim Lacombe,
USACE Engineer Research and Development Center, Cold Regions Research and
Engineering Laboratory (ERDC-CRREL)

Roy J. Greenfield, Department of Geosciences, Penn State University

Surface of geologic model

Model slice at South-North coordinate = 130 m

	P-wave speed (m/s)	S-wave speed (m/s)	Density (kg/m³)	Qp, Qs
Upper soil	1000	577	1750	20, 10
Lower soil	1600	625	2000	30, 15
Granitic bedrock	3500	2333	2650	75, 36

Force inputs from idealized force vs. time record of tracked vehicle

vertical force

Force inputs from dynamic model of M1A1

Force

- Track and suspension details emphasized, including:
 - Individual track block & road wheel inertial/mechanical properties
 - Track pin configuration (single or dual)
 - Road arm stiffness and damping
 - Track tension control
- M1A1: 195 bodies, 356 DOF
- Hull & turret are single sprung mass (w/ roll, pitch, and yaw)
- Soil/track reactions included
- Vehicle driven by torque at drive sprockets

Time

Vehicle paths over topographic surface

Propagation modeling

Objective

- Models of sizes for battlefield systems
- Propagate YÛ vehicle ground vibrations to sensors

Approach

- AFOSR, FDTD
- 3-D wave equation
- Parallel computations
- Soil attenuation
- Topography, heterogeneous geol.
- Complex ground forcing

Details

- **1.6-m spacing**
- -~286 ´210 ´80 m
- 180 ms time step
- 108-processor domain

x 10⁻⁵

3

2

-1

-2

-3

w (m/s)

Surface vibration from idealized vehicle forces

Propagation Features

Effects of

- •Vehicle speed
- •Shallow bedrock
- •Ravine and water table
- Outcrop
- •Material damping

Surface vibration from idealized vehicle forces

Propagation Features

Effects of

- •Vehicle speed
- •Shallow bedrock
- •Ravine and water table
- Outcrop
- •Material damping

Vertical particle velocity from idealized vehicle at four "receiver" locations

- allows placement of virtual sensors at any point in the simulation domain
- allows ground sensor networks to be simulated

Spectrogram of w signal from idealized vehicle at outcrop receiver

Movement of M1A1 in vehicle dynamics/ ground force prediction computation

Features

•Turn at 4-5 seconds

Surface vibration from M1A1 model forces

Propagation Features

Effects of

- •Higher frequency input
- •Turn of vehicle

Surface vibration from M1A1 model forces

Propagation Features

Effects of

- •Higher frequency input
- •Turn of vehicle

Vertical particle velocity from M1A1 model forces at four "receiver" locations

Spectrogram of w signal from M1A1 model at receiver between outcrop and trench

Virtual deployment of UGS seismic network

Surface vibration from calibration forces

Propagation Features

Effects of

•Dropping calibration "stones" out of helicopter

Calibration data recorded by seismic network

Four calibration events: known location, time, and magnitude

Note changes in character of each calibration event

Corrections calculated by seismic network

Method for LOB is NARROWBAND 2-D beamformer

Method for ranging is BROADBAND exponential decay algorithm

Example corrections to calibrated pulse locations

Red line: true lob/range from node to calibration pulse

Blue circle: estimated lob/range from node to calibration pulse based on raw data

Green circle: corrected lob/range from node to calibration pulse based on geologic adaptation

Adapted network tracking performance

Summary

The moving vehicle simulations:

- produce realistic and expected results
- produce seismic vehicle signatures with features of measured signatures
- are the first such simulations

Summary, continued

Example applications:

- Demonstrate use of the simulations for system development and user situational awareness
- Are the first high population UGS network tracking results of their kind
- Demonstrate method for uniquely adapting UGS network to environment

Conclusion

These results provide a strong indication that simulations have a role in seismic system development and acquisition

Their impact can be seen as:

- reducing system costs and development time
- improving system performance in complex environments
- allowing propagation physics to be incorporated into system algorithms

